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Starting from the phase-space generating functional of the Green function for a 
system with singular higher order Lagrangian, the generalized canonical Ward 
identities under the global symmetry transformation in phase space is deduced. 
The local transformation connected with this global symmetry transformation is 
studied, and the quantal conservation laws are obtained for such a system. We give 
a preliminary application to higher derivative Yang-Miils theory; a generalized 
quantal BRS conserved quantity is found. 

1. I N T R O D U C T I O N  

The connection between continuous global symmetry and conservation 
laws is usually referred to as the Noether theorem in classical theories. Ward 
identities (or Ward-Takahashi identities) play an important role in modern 
quantum field theories (Ward, 1950; Takahashi, 1957; Slavnov, 1972; Taylor, 
1971). These identities have been generalized to supersymmetry (Joglekhar, 
1991) and superstring theories (Danilov, 1991) and other problems. All of 
these discussions for the Noether theorem and Ward identities in the functional 
integration method (Surra and Young, 1973; Young, 1987; Lhallabi, 1989) 
are usually based on the examination of the Lagrangian in configuration 
space and the corresponding transformation expressed in terms of Lagrange's 
variables. The generalization of the Noether theorem to a system with a 
singular Lagrangian in terms of canonical variables was given in Li (1993). 
Phase-space path integrals are more basic than configuration-space path inte- 
grals (Mizrahi, 1978). While the phase-space generating functional cannot 
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be simplified by carrying out explicit integration over the canonical momenta, 
even if the integration over the momenta can be carried out, the effective 
Lagrangian sometimes shows a singularity with a ~-function (Lee and Yang, 
1962; Gerstein et al., 1971; Due t  al., 1980). Thus, the investigation of the 
symmetry properties of the system in the phase space for the quantum theories 
has more fundamental sense. Canonical local symmetry in a system and 
canonical Ward identities were discussed in Li (1994, 1995). Dynamical 
systems described in terms of a higher order Lagrangian obtained by many 
authors are of much interest in connection with gauge theories, gravity, 
supersymmetry, string models, and other problems (Li, 1993). Here, canonical 
global symmetry for a system with a singular higher order Lagrangian will 
be further investigated. Based on the phase-space generating functional of 
the Green function for a system with singular higher order Lagrangian, the 
generalized canonical Ward identities under the global symmetry transforma- 
tion in phase space are deduced. The realization of a canonical Noether 
theorem at the quantum level for such systems is given. Applying our formula- 
tion to higher derivative Yang-Mills theory, we obtain a generalized quantal 
BRS conserved quantity. 

2. CANONICAL WARD IDENTITIES FOR GLOBAL 
SYMMETRY 

Let us consider a dynamical system described by a singular Lagrangian 

~(~ ' .~ ' .~ .  " ' "  ~,,~,o), ~',~m~ ---- 0~''" 0~j ~,~ 
m 

Due to the singularity of the Lagrangian, the motion of this system is restricted 
to a hypersurface of the phase space, determined by a set of constraints, The 
generating functional of the Green's function for this system can be written 
as (Li, 1994; Gitman and Tyutin, 1990) 

• exp i d4x (..~epfr + -,,~1(')a'~'wts) + ,-,~ 0,<,))j (1) 

where ~ff is an effective canonical action 

f I ~U = d4x ~gff = d 4 x  L ,,a w(s) - ~ c  + hmf~m 

+ -~ day -Ck(x){~k(x), ~t(y)}C~(y) (2) 
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and "rr~ ) is the canonical momentum determined by the Ostrogradsky transfor- 
mation, ~ is the canonical Hamiltonian density, qb = {~m} is a set of all 
constraints (for a theory with second-class constraints) or the set of constraints 
and gauge conditions (for a theory with first-class constraints), { -, �9 } denotes 
generalized Poisson bracket, Cl(X) and Ck(x) are Grassmann variables, and 
hm(X ) are Lagrange multipliers. For the sake of simplicity, we put 

q)(c~) = (+(~),)kin,  Ch Ck ) and J~) = (J~), U,,,, ~,, -~t) 

where U,., ~k, and ~t are exterior sources with respect to h,., Ck, and Ct, 
respectively; then the expression (1) can be written as 

Z[j, K] = ~bq~(~) ~b'rr~ ) exp i d4x (~Pff + j~)q~) + Kcs)~,~ ) (3) 

Let us consider a global symmetry transformation in extended phase 
space whose infinitesimal transformation is given by 

,~'~'~Cx') = , ~ ( x )  + a , ~ ) ( x )  = ,~'~)(x) + ~,,@~(x, ~'~), 'rr~)) 

~rU(x')  = ~r~)(x) + zX~r~)(x) = ~ ) ( x )  + ~ , q ~ ' ( x ,  ~ %  ~ ) )  

(4) 

where e,~ (or = 1, 2 . . . . .  r) are infinitesimal arbitrary parameters, and .rr 
~(~, and -q~)" are functions of x, q0c~ ), and ~r~ ). It is supposed that the effective 
canonical action is invariant under the transformation (4) and the Jacobian 
of the transformation (4) is equal to unity. The generating functional (3) is 
invariant under the transformation (4); thus, one gets 

z'Ij, h'] = ~'d,~ ~ )  1 + iE,, d4x "~) ~ - '~,"o,,. 

(5) 

Consequently, the generating functional satisfies the following generalized 
canonical Ward identities: 
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5j~--- ~ +/~(5) Z[j, K] = 0 
q~)--~ - i f~6 j~) ,~) - ' -~ -  i8,~6/~(s) 

(6) 

Functionally differentiating (6) with respect to the exterior sources j~) many 
times and setting all exterior sources equal to zero, one can obtain some 
relationships among the Green functions. 

3. CONSERVATION LAWS AT THE QUANTUM L E V E L  

It is supported that the effective canonical action is invariant under the 
global transformation (4). Let us consider the corresponding local 
transformation: 

t t r 
cp(5)(x ) = ~p~)(x) + A~p~)(x) = ~p~5)(x) + r ~P(s), xr~ )) (7) 

where %(x) (or = 1, 2 . . . . .  r) are infinitesimal arbitrary functions; the values 
of r and their derivatives up to required order on the boundary of time- 
space domain vanish. Under the transformation (7) the variation of the effec- 
tive canonical action is given by Li (1993) 

qo~),~,'r ~) 

+ (~o~) - ~iH~t~xt~))('q~ )~ - ~r~,~7(5) ~ )  

+ (s) �9 a (s) ao- - D['tr~ (6(5) ~P~),~x:)] } a~[(,tr,, ~P(5) ~ n ) ~  ~'] + 

+ I d4x (s). a {[(~. .  q0(5) - ~f,n).r~]0~,e, .(x) 

-4- ~(s)[~zoto" 
" , ~  ~s0) - q~),~'r~)D~(x) (8) 

where D = dldt, and H ~  is the Hamiltonian connected with Le~ef = f d3x 
S~ff. Since we have assumed that the effective canonical action is invariant 
under the global transformation (4), then the first integral in expression (8) 
is equal to zero. The Jacobian of the transformation (7) is denoted by J[q~, 
"tr, e]; the invariance of the generating functional (3) under the transformation 
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(7) implies that ~Zl~e,,(x) = O. We perform the integration by parts of  the 
right-hand side of  the remaining terms in expression (8), after which we 
substitute the result of  ~ f r  into (3) and functionally differentiate the obtained 
result with respect to e,~(x); we have 

�9 - ' t , , ,~  ~ ( , )  - q~(s),/r )] 

_j~_M~}exp[ i ld4x(~E~ef fa_; (s ) .~a  ,~ (s)] - J,~ w(~) + K ( , ) ~ , ~  ) = 0 ( 9 )  

where 

J~ = - i~J[~p, mr, ~ ] / ~ ( x )  I ~,,0,)=o 

g ~ - ;(s)/e~,,~ _ ~ z-(s~ - rr~! ,r ~ )  - -  J a  ~,S(s) q3~s),p. T e a )  + ,'~(s)~.'la 

Functionally differentiating (9) with respect to j~)  n times, one gets 

f ~q~)  ~'rr~) ({ 0.[('rr~)*~) - ~e~)'r ~ ] 

(s) act + D[~ra (1~(~) - q~),~x~a)] - Jg - -  M * l q ~ a ( x l ) q ~ a ( x 2 )  " ' "  q~a(Xn)  

- i ~ ,-(x,)~o-(x2) . . .  ~"(x j_~)~" (x j+ , )  . . .  ,~(x.)  
J 

X Na~(x  - xj)) exp[i  f d4x (~ f f  + j~)q~(% + K~s)~r~))] 

where 

(1o) 

(11) 

= 0 (12) 

N '~'~ = ~(%'~ - q~y~,"r ~ (13) 

Let us set all exterior sources equal to zero in expression (12); J~) = K~ o 
= 0; we obtain 

<01 ~ { o~[(~)r  - ~ ) r  '~] 

+ (s) a~  a p.~ D['tra (6(,) - q~(s),~ 'r )1 - J~}q#(x,)q>a(x2) "'" q0a(Xn){0> 

= i ~ <01 ~[,~a(x,),p~(x2) - . .  ~ ( x j _ , ) ~ ( x j + , ) . . .  ~ ( x . ) N ~ l O > ~ ( x  - x~) 
J 

( 1 4 )  

where the symbol 7"* stands for the convariantized T product (Surra and 
Young, 1973; Young, 1987). Fixing t and letting 

t,, t2 . . . . .  tm ---> +oo, tin+l, tin+2 . . . . .  tn ---> --0o 
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and using the reduction formula (Surra and Young. 1973; Young. 1987). we 
can write expression (14) as 

(out, m I (s) �9 a _ n r _ ( s ) / ~ : ~  _ { 0~,[('rr~. q0(,) ~eer) "r+''] + .--t - , i  ~ ( + )  tp~+).~'r~)] (15) 
- J ~ } l n  - m ,  in) = 0 

Since m and n are arbitrary, this implies 

( s )  �9 <x / - ' ) f ~ ( s ) / ~ t x t ~  a I ~  0~[('rr,~ q0(s) - ~efr)'r ~'] + ,--,t,,,~ ~(+) - %~).~[r )] = Jg (16) 

It is supposed that the Jacobian of transformation (7) is a constant [or indepen- 
dent of %(x)]; in this case, Jg = 0. We take the integral of the expression 
(16) on three-dimensional space. If we assume that the fields have a configura- 
tion which vanishes rapidly at spatial infinity, according to Gauss' theorem, 
we obtain the following conserved quantity at the quantum level: 

Qcr = [ d3x tr'(~)/~",,,~ ~'a~) - ~P~u, "d'~) - ~ n  "r~ (17) 

This result holds for anomaly-free theories. 
The conservation law (17) in the quantum case corresponds to the 

classical conservation laws deriving from the canonical Noether theorem (Li, 
1993). In general, ~r differs from the canonical Hamiltonian ~ and the 
Jacobian of the transformation (7) may not be a constant; then the conserved 
quantity (17) is different from the classical ones. The connection between 
the symmetries and conservation laws in classical theories in general is no 
longer preserved in quantum theories. 

The advantage of the above formalism for obtaining conserved charges 
at the quantum level is that we do not need to carry out explicit integration 
over the canonical momenta in the phase-space generating functional. In the 
general case it is difficult or impossible to carry out these integrations. 

4. AN APPLICATION 

We consider Yang-Mills theory with higher order derivative whose 
Lagrangian is given by (Li, 1994; Gitman and Tyutin, 1990) 

1 F a F a ~  _ 1 
= - ~  _ ~  ~A 2 Dgb~F~aD~FCX~ (18) 

" " + fg,A~A. (19) 

D~b~ = ~gO, + ff~bA~ (20) 

In the Coulomb gauge the phase-space generating functional of the Green 
functions for this system can be written as (Li. 1994) 
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where 

z[y, ~,~,-q] 

= I ~A~ ~A~)~ ~ ~Tr~ ~)~ ~ C  ~ ~-~a ~Xm ~(~l)~(~a~2) 

[ I  - ] X exp i d~x (~,~ + J~'.4~ + C"~ + ~ + nmkm) (21) 

,•P t t ' a  - __ = ~raA~ + ~)~A~).  ~c 

~ = x ~ )  + x~,l,~ 2) 

~:~ gh = 2 ~'~a D~biO i Cb 

(22) 

(23) 

(24) 

(25) 

~c is the canonical Hamiltonian density for the Lagrangian (18), ~r~ and 
a'r(a 1)~ are the canonical momenta conjugate to A~ and A~l)~ = A~, respectively, 
and { �9 } and { ~ c  } are constraints and gauge conditions, respectively (Gitman 
and Tyutin, 1990). In expression (21) we have introduced sources J~ only 
to fields A~. The theory is independent of the choice of gauge conditions 
(Sundermeyer, 1982); the ~ (i = 1, 2) can be replaced by ~ . '  = ~ - 
Pai, where Pal(X) are independent of the gauge. We consider instead of the 
measure in (21) one obtained by performing the Gaussian average 

I~pal~Pa2exp[-i I (P2ai/2~i) d4x ] (26) 

over the measure ~ defined by 

~p~ = ~A~ ~A~l)~ ~ ~'rr~ 1)~ ~)C ~ ~ ' ~  ~hm 

X ~(OGI  - -  Pal)~(OaG2 - -  Pa2) ( 2 7 )  

This amounts to the substitution of the generating functional (21) into the 
following expression: 

Z[J, ~, ~, xl] = f ~A~ ~A(~)~ ~'rra ~ ~"n'(a I)p~ ~ C  a ~-aa ~hm 

x exp i d4x ( ~  + J.'A~ 
,J 

+ ~ + ~.c" + "rim• (28) 
1 
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where 

{ 

.~ee = ~P + ~y  + ~'m + ~s (29) 

1 1 
~ ;  = --2a--"~ ((I)y2)2 = --2(~-'--~. (oiaa)2 (30) 

~'~ = k~tl)(a~) + h~(1)(a~) -- ~at (qbY')2 (31) 

Let us consider the BRS transformation in phase space: 

8Aa~ = l~b~Cb'r, 3A~,)~ = o0(l~b~Cb'r) (32a) 
- -  u p ,  ~'rr~a - f~/rre C% - f~,e"tr(I)~~ ~'tr (I)~" = fgjrr(e')~C~ (32b) 

~C ~ = �89176 e, ~ '~  = -(,rla~)O~A a (32c) 

where 'r is a Grassmann parameter. Since (1)(]) and (1)(a~) are first-class con- 
straints, and the change of first-class constraints under the gauge transforma- 
tion (32a) is within the constraint hypersurface (Li, 1995); thus, ~ , ,  ~ 0 
and ~ f  ~ 0 under the transformation (32). That is to say, the variation of 
the effective canonical action ~ r  is 8~fr ~- 0 under the transformation (32), 
where the sign ~ means equality on the constrained hypersurface (including 
gauge constraints). The Jacobian of the transformation (32) is equal to unity. 
According to (17), we obtain the generalized BRS conserved quantity at the 
quantum level 

Q = I d3x [~r~a~a~ + ~r(2)~Afi)~, + ~ra~C" + ~ a ~ ]  (33) 

where 

1 

l (D~aJ1~byvOi -I- l~bjOeboF~) - D~ao'ff9 )i + F Oi (34) = 

I 

~ra = - C ~, ~ = D~boC b (35) 
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